

PII: S0040-4039(96)01585-7

TOTAL SYNTHESIS OF PHOMACTIN D

Hiroaki Miyaoka, Yasuhiro Saka, Shotaro Miura and Yasuii Yamada*

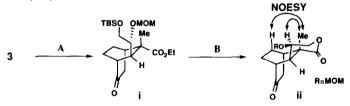
School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-03, Japan

Abstract: The first total synthesis of PAF antagonist marine diterpenoid phomactin D was achieved from L-ascorbic acid. This synthesis involves the formation of bicyclo[2.2.2]octane derivative 3 by the sequestial Michael reaction, oxidative cleavage of the double bond of 4 and cyclization of sulfone 18. Copyright © 1996 Elsevier Science Ltd

Phomactins are novel platelet activating factor (PAF) antagonists that have been isolated from the culture filtrate of the marine fungus, *Phoma* sp. (SANK 11486), a parasite on the shell of the crab, *Chinoecetes opilio*. ^{1,2} Their structures, containing a rare bicyclo[9.3.1]pentadecane ring system, were determined based on spectroscopic evidences, X-ray crystallography and chemical conversions. The absolute configurations of phomactin A, B, B₁ and B₂ could be clarified while those of phomactin C, D, E, F and G still remain unclear. Phomactin D has the strongest PAF antagonistic activity among phomactins. The synthesis of phomactin D has not been reported. Thus, its unique structure and biological activity prompted the authors to undertake the total synthesis of phomactin D. Herein, we wish to report a first total synthesis of phomactin D (1).

In the course of synthesizing natural products using bicyclo[2.2.2] octane derivatives as chiral building blocks, 4 the present method was applied to the synthesis of structural unique phomactin D. The synthetic strategy involves the formation of bicyclo[2.2.2] octane derivative A by diastereoselective sequential Michael reaction, 5 oxidative cleavage of the C(2)-C(19) bond 6 in A to give pentasubstituted cyclohexane segment C via compound B and the cyclization of sulfone E obtained by coupling C with the sidechain segment D, as key steps (Figure 1).

The sequential Michael reaction of the kinetic enolate of 2-cyclohexen-1-one with ethyl (E, R)-3-(2,2dimethyl-1,3-dioxolan-4-yl)-2-methyl-2-propenoate (2),7 prepared from L-ascorbic acid, in THF -78°C afforded bicyclo[2.2.2]octane derivative 3.8 mp 78-80°C, [α]_D -21.8° (c 1.00, CHCl₃), corresponding to **A** in synthetic strategy, as the sole product in 74% yield (Scheme 1). Ketone 3 was converted to olefin 4, $[\alpha]_D$ -22.8° (c 1.12, CHCl₃), in three steps: 1) NaBH₄ reduction to the alcohol, 2) tosylation of the hydroxyl group and 3) elimination of the tosylate by DBU. Oxidative cleavage of the C(2)-C(19) double bond in 4 was achived by ozonolysis in the presence of pyridine in MeOH-CH₂Cl₂ followed by NaBH₄ reduction of the aldehyde afforded lactone 5, $[\alpha]_D$ -62.9° (c 1.06, CHCl₃). Compound 5 was converted to alcohol 8, $[\alpha]_D$ -21.1° (c 1.45, CHCl₃), in five steps; 1) protection of hydroxyl group as MOM ether, 2) LiAlH₄ reduction of lactone to diol 6, 3) selective protection of the less hindered primary hydroxyl group as pivalate, 4) protection of another hydroxyl group as TBS ether to silyl ether 7 and 5) reductive deprotection of pivalate by DIBAL-H to alcohol 8. Oxidation of the primary hydroxyl group in 8 with PDC gave aldehyde 9. Epimerization of the C-12 position in 9 was carried out by treatment with K₂CO₃ in MeOH to give a mixture of aldehyde 9 and the thermodynamically stable epimer 10, bearing desired chiral centers at C-1, C-11, C-12 and C-15 corresponding to phomactin D. (9: 10 = 1:4). Following reduction of the mixture of 9 and 10, alcohols 8 and 11 were obtained and separated by silica gel column chromatography. The hydroxyl group in 11 was converted to a methyl group in two steps: 1) conversion of the hydroxyl group to phenyl sulfide and 2) lithium metal reduction of phenyl sulfide in liq. NH3 to 12. The TBS group in 12 was removed with Bu4NF, whose hydroxyl group was converted to phenyl sulfide whose oxidation by OXONE^{®10} gave sulfone 13, $[\alpha]_D$ -2.4° (c 0.25, CHCl₃). Sulfone 13 was converted to aldehyde 15, corresponding to cyclohexane segment C, via alcohol 14 in the following six steps: 1) hydrolysis of acetonide, 2) NaIO₄ oxidative cleavage of 1,2-diol, 3) NaBH₄ reduction of aldehyde to alcohol 14, 4) protection of hydroxyl group as benzyl ether, 5) deprotection of MOM ether and 6) oxidation of the hydroxyl group to aldehyde 15.


Reaction of alkenyllithium reagent, corresponding to side chain segment **D**, prepared from alkenyliodide 16^{11} and 'BuLi, with aldehyde 15 in THF gave alcohol 17, $[\alpha]_D + 20.0^{\circ}$ (c 0.59, CHCl₃), as the sole product in 72% yield. The hydroxyl group in 17 was protected as benzyloxymethyl (BOM) ether; by deprotection of TBS ether using Bu₄NF, the hydroxyl group was converted to chloride directly using methanesulfonyl chloride and 4-*N*,*N*-dimethylaminopyridine in CH₂Cl₂ to give allylic chloride 18. The macrocyclization of sulfone 18 was successfully carried out by treatment with potassium bis(trimethylsilyl)amide (KHMDS) in THF (3.0 x 10^{-3} M) to afford 19, $[\alpha]_D + 5.7^{\circ}$ (c 0.14, CHCl₃). Removal of the phenylsulfonyl group and deprotection of benzyl and BOM ether were carried out by treating 19 with sodium in liq. NH₃ to afford the diol. Epoxidation of the allylic alcohol with 'BuOOH in the presence of vanadyl acetylacetonate 13 gave epoxide as the sole product. Finally, PDC oxidation of the primary and secondary hydroxyl groups completed the synthesis phomactin D (1), mp 96-97°C, $[\alpha]_D + 103.0^{\circ}$ (c 0.30, CHCl₃). H-NMR (400 MHz) spectra and the sign of optical rotation of synthetic 1 were identical to those of natural phomactin D, mp 97-98°C, $[\alpha]_D + 114.3^{\circ}$ (c 1.01, CHCl₃). The absolute configuration of phomactin D is thus shown to be 1.

Reagents: A. LDA, THF, -78°C, then 2, 74%; B. i) NaBH₄, MeOH, 0°C, ii) TsCl, Py, 0°C, iii) DBU, toluene, 100°C, 53% (3 steps); C. O₃, Py, CH₂Cl₂-MeOH, -78°C, Me₂S, then NaBH₄, 0°C, 96%; D. i) MOMCl, ¹Pr₂NEt, CH₂ClCH₂Cl, 50°C, 99%, ii) LiAlH₄, THF, 0°C, 88%; E. i) PivCl, Py, 0°C, 75%, ii) TBSCl, imidazole, DMF, r.t., quant.; F. DIBAL-H, toluene, -78°C, quant.; G. PDC, 4ÅMS, CH₂Cl₂, r.t.; H. K₂CO₃, MeOH, r.t.; I. NaBH₄, MeOH, 0°C, 88% (3 steps); J. i) PhSSPh, Bu₃P, Py, r.t., 96%, ii) Li, liq. NH₃, THF, -34°C, 84%; K. i) Bu₄NF, THF, r.t., quant., ii) PhSSPh, Bu₃P, Py, N-phenylthiosucciimide, 50°C, quant., iii) OXONE®, THF-MeOH-H₂O, quant.; L. i) 80% AcOH, 50°C, ii) NaIO₄, (NH₄)₂SO₄, MeOH-H₂O, 0°C, iii) NaBH₄, MeOH, 0°C, 97% (3 steps); M. i) BnBr, NaH, THF-DMF, r.t., 86%, ii) 6N HCl, r.t., 98%, iii) PDC, 4ÅMS, CH₂Cl₂, r.t., 86%; N. ¹BuLi, 16, THF, -78°C~ -10°C, 72%; O. i) BOMCl, ¹Pr₂NEt, 50°C, 94%, ii) Bu₄NF, THF, r.t., 73%, iii) MsCl, DMAP, CH₂Cl₂, r.t.; P. KHMDS, THF, r.t., 39% (2 steps); Q. i) Na, liq. NH₃, THF, -34°C, 98%, ii) VO(acac)₂, ¹BuOOH, Ph-H, r.t., iii) PDC, 4ÅMS, CH₂Cl₂, r.t., 60% (2 steps).

Acknowledgments: The authors express their appreciation to Dr. M. Sugano and Dr. A. Sato, Sankyo Co. Ltd. for providing the sample and the NMR spectra of phomactin D. This work was supported in part by a Grant-in-Aid for Scientific Research (Grant No. 07672294) from the Ministry of Education, Science and Culture of Japan.

References and Notes

- a) Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya, K.; Kuwano, H.; Hata, T; Hanzawa, H. J. Am. Chem. Soc., 1991, 113, 5463-5464; b) Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Haruyama, H.; Yoda, K.; Hata, T. J. Org. Chem., 1994, 59, 564-569; c) Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Kuwano, H.; Hata, T. J. Antibiotics, 1995, 48, 1188-1190.
- a) Chu, M.; Patel, M.G.; Gullo, V.P.; Truumees, I.; Puar, M.S. J. Org. Chem., 1992, 57, 5817-5818;
 b) Chu, M.; Truumees, I.; Gunnarsson, I.; Bishop, W.R.; Kreutner, W.; Horan, A.C.; Patel, M.G.; Gullo, V.P.; Puar, M.S. J. Antibiotics, 1993, 46, 554-563.
- 3. Synthetic study of phomactin A: Foote, K.M.; Hayes, C.J.; Pattenden, G. *Tetrahedron Lett.*, **1996**, 37, 275-278.
- a) Nagaoka, H.; Kobayashi, K.; Yamada, Y. Tetrahedron Lett., 1988, 29, 5945-5946; b) Iwashima, M.; Nagaoka, H.; Kobayashi, K.; Yamada, Y. Tetrahedron Lett., 1992, 33, 81-82; c) Nagaoka, H.; Shibuya, K.; Yamada, Y. Tetrahedron Lett., 1993, 34, 1501-1504.
- 5. a) White, K.B.; Reusch, W. Tetrahedron, 1978, 34, 2439-2443; b) Nagaoka, H.; Shibuya, K.; Kobayashi, K.; Miura, I.; Muramatsu, M.; Yamada, Y. Tetrahedron Lett., 1993, 34, 4039-4042 and references cited therein.
- 6. Numbering of compounds is in accordance with that for phomactin D.
- 7. Leonard, J.; Mohialdin, S.; Swain, P. A. Synth. Commun., 1989, 19, 3529-3534.
- 8. The stereochemistry of 3 was determined by the NOESY spectrum of compound ii, which was converted from 3 via compound i, as shown below. Similar sequential Michael reaction has been reported by our laboratory. See: Nagaoka, H.; Kobayashi, K.; Okamura, T.; Yamada, Y. Tetrahedron Lett., 1987, 28, 6641-6644.

Reagents: A. i) 80% AcOH, 50°C, 97%, ii) TBSCI, imidazole, DMF, r.t., 99%, iii) MOMCI, Pr₂NEt, CH₂CICH₂CI, 50°C, 71%; B. i) Bu₄NF, THF, r.t., 62%, ii) 1N NaOH, DME, r.t., iii) DCC, Py, r.t., 67% (2 steps).

- 9. The ratio of the diastereomers was determined by ¹H-NMR analysis.
- 10. Trost, B.M.; Curran, D.P. Tetrahedron Lett., 1981, 22, 1287-1290.
- Alkenyliodide 16 was synthesized from 4-pentyn-1-ol in the following. cf: Negishi, E.; Van Horn, D.V.; King, A.O.; Okukado N. Synthesis, 1979, 501-502.

OH
$$\xrightarrow{A}$$
 OH \xrightarrow{B} OH \xrightarrow{C} 16

Reagents: A. i) PDC, 4ÅMS, CH₂Cl₂, r.t., ii) Ph₃P=C(Me)CO₂Et, benzene, r.t., 63% (2 steps), iii) DIBAL-H, toluene, -78°C, 97%; B. Me₃Al, Cp₂ZrCl₂, CH₂Cl₂, 0°C∼ r.t., then I₂, THF, -30°C, 89%; C. TBSCl, imidazole, DMF, r.t., 83%.

- 12. Attempt at the direct coupling of aldehyde 15 and alkenyliodide 16 using CrCl₂ in the presence of NiCl₂ was unsuccessful. cf: Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc., 1986, 108, 6048-6050.
- 13. Sharpless, K.B.; Michaelson, R.C. J. Am. Chem. Soc., 1973, 95, 6136-6137.

(Received in Japan 12 July 1996; revised 6 August 1996; accepted 12 August 1996)